PHYSICAL REVIEW E VOLUME 56, NUMBER 1 JULY 1997

Scaling behavior of velocity and temperature in a shell model for thermal convective turbulence
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Based on the conservation of total energy and entropy under conditions of nonviscosity and forcing-free, a
shell model is developed to simulate the thermal convective turbulence. A fluxlike coupling mode is supposed
to ensure that the total exchanging enef&E) between the velocity and temperature is conserved when
omitting the buoyancy, external forcing, and viscous effects. We call this EE conservation. Under such as-
sumptions, the relative scaling exponents of structure functions with preez almost parameter independent
and consistent with a multiplicative cascade model presented by She and Léfnyse Rev. Lett72, 336
(1994)]. Moreover, the energy spectra with different controlling parameters can be collapsed into a single curve
by Kolmogorov scaling. Otherwise, the model behaviors may be parameter dependent.
[S1063-651%97)00707-1

PACS numbgs): 47.27.Ak, 05.45+b

|. INTRODUCTION teractions while preserving some basic symmetries and
conservation laws. In other words, the differences among
It is generally believed that fully developed turbulencethese models are the choices of local interaction modes that
has an inertial range in which the fluid motions show univer-determine the unstable fixed points and accordingly different
sal behaviors. In particular, the structure functions may deg?’gr‘l?;‘j'iﬁgtt’ﬁgag’éﬂsexﬁé cli(i:r?(leﬂt]ilg]érlfearginaorﬁf dega#e[lilcﬂylike
pend on the edd_y scale b_y a power law, !@qu_{p quantity L=3(e—1)""|u,|?, the system behaves nearly
(wheredw, is longitual velocity difference at distanéep is  njversally. By constructing a model with only one conser-
an arbitrary real number, an() is statistical averageand  yation quantity, Gat, Procaccia, and Zeite2] found that
{pis a scaling exponent. In recent years, much numerical angd — p/3. Therefore, we will restrict ourselves to searching
experimental evidencel] show that{,, is a nonlinear func-  for the relationship of conservation laws and dynamical be-
tion of p. This is supposed to be induced by turbulent inter-haviors and the conditions under which a shell model for
mittence. A variety of phenomenological models have beerthermal convective turbulence may seemingly have univer-
proposed by various authors to explain the intermittencéality. .
mechanism. Among them the most recent and more plausible FOr thermal convective turbulence, the heat transport

one is that of She and Leveq(] (denoted as S[2] here- plays a key role in the motions. In some specific cases such
afted. The model predicts that,=p/9+2[1— (2)P3 as Rayleigh-Beard convection, the total exchanging energy
. p 1

0 ) (EE), heat flux converted from external heating into the fluid
which is supported by experimental resui® and observa- ,4tions  can be regarded as constant under certain condi-
tions of magnetohydrodynamics turbuleriég Intuitively, if  tions. Therefore, in our model the nonlinear coupling modes
a scalar propertyl’ such as temperature and density is con-petween shells are designed to conserve the EE in the limit
vected by the current field, we may expect that a similafof zero viscosity, forcing, and buoyancy. We shall call this
scaling exists for the scalar structure functions, that iEE conservation.

(8TPy~1%. However, in the case of thermal convective tur-  The paper will be organized as follows. Section II pre-
bulence, the picture is more complicated by the fact that théents the construction of the model. Section IlI gives the

SL [2] scaling, and other scaling modé&j, seemingly con-  Scaling behavior of the structure functions. It is found that
tradict the existing fact6]. the relative scaling exponents, which are the powers of struc-

In the present paper, a shell mod@r the Gledzer- ture functions related to the third-order structure function

Ohkitani-Yamada modglof thermal convective turbulence within the inertial range, are almost parameter in(_jependent.
with neutral stratification is developed to study the scaling”©" the sake of comparison, we apply the coupling modes
behaviors of velocity and passive scalars. Similar model$t99€sted by Jensen and co-workgisto this problem and
have been presented by Jensen and co-wofRérin which ind that the scaling Iaws_ strongly depend on the controllm_g
the scalar field is purely passively driven by currents, and bya/ameters. The normalized spectra and the corresponding
Brandenburd8] and Suzuki and Toh9] for stable stratifi- energy communlcatlon scenario are discussed in Seg. V.
cation. Because the two latter models use real variables JYhen EE is conserved, the spectra can be collapsed into a
each shell, they may not simulate the phase transfer of tungle curve by Kolmogorov scaling even in the dissipation
bulence. Generally, a shell model replaces the global corrd€9ion- The dynamical implication of the model and conclud-

lation of Navier-Stokes equations by localized nonlinear in-"9 remarks are presented in Sec. V.
II. MODEL

*Present address: Natural Cybernetics Center, Institute of Atmo- For thermal convective turbulence, in addition to some
spheric Physics, 100 029 Beijing, People’s Republic of China.  general symmetries, there are two important conservative
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guantities, i.e., the total enerdy and the total entropy¥ in ~ We call this model 1. After some manipulations we derive
the limit of zero viscosity and forcing. In the context of
theoretical and experimental studies, a horizontally periodic i
or homogeneous geometry is usually supposed, so that total dt
vertical heat flux is independent of the height of the fluid
layer[13]. In a steady state, a constant vertical heat flux in d 5 . 212 en ene1

the atmospheric boundary layer can also be assumed tobe a g |%nl” / 2= fnff — kGl 6|+ Fy—F5™%,

good approximation under the prerequisite of horizontal ho-

mogeneity[14]. Therefore, we hope that EE can be con-

served also under certain conditions while keeping the con- at Re(U, 0% ) =Re fXu,— (v+ k)k2u, 05 1—a| 6,2+ FL,
servation ofE andV in our model. To describe the phase

|un|2/ 2:_Vkﬁ|un|2_a RqUnG:)+FE_FE_1v

transfer, complex variables will be adopted. A Boussinesq —F3§1,
approximation 15] is always supposed. With these in mind,
the model can be constructed as whereFj, Fj, andF;, represent the corresponding fluxes

transferring toward high wave numbers. Then the total en-
tropy is conserved without forcing and viscosity, and it will
be conserved statistically in the real model after some tran-
sient processes, i.g.yY)=const. However, the conservation
of total exchanging energy requires no buoyancy. As a mat-
—~ab,, ter of fact, the exchanging energy at each shell decreases at a
constant raté&r=|6,|2. Here we see that the buoyancy plays
an important role in the cascading processes. While preserv-
ing total entropy cascading, the existence of buoyancy alters
dbn _ 2 ; * g% x gk the energy transferring scenario of the velocity field. At each
— = — kK On+iKn(a1Un, 1 074 o+ asUn 00, 9yt 9 - Y ek
dt non M shell, even in the so-called inertial range, exchanging energy
is supplied from the scalar field so that kinetic energy flux is
+BUn-16n 1~ Balln 101t Valn 167 not shell independent. Similarly, the EE may not obey a
* gk cascading scenario strictly. Nevertheless, our numerical re-
+y2Un20h 1) +fa, . . .
sults show that energy cascading persists and an obvious
inertial region existdsee Fig. 8a) below|. Moreover, the
where complex variables, and, (n=0,1,...,N) are ve-  scaling rules of structure functions are almost independent of
locity and temperature components for wave nunmberand a.
v and « are viscous and diffusive coefficients, respectively, If we apply the coupling modes of Jensen and co-workers
throughout this study we choose= (Prandtl number Pr [7] to the present problem, the parameters will be
=1); @ denotes the thermal convection of the velocity field, L
which is proportional to the Rayleigh number Rg;denotes ar=ay=1, B1=F2=3, v=v2=~
the external forcingk,=k,2", i=+—1, and the asterisks
represents a complex conjugate operation. Obviously, th
model herein meets the Liouville theoreB,du,/u,=0.
The total energ)E, entropyV, and exchanging energy,
can be defined as

du, €
— 2 H * * * *
dt = —vkyun+ik, un+lun+2_§ UntaUn—1

1-¢
* *
- 4 Up_1Up_»

ES

@

Now « is a unique parameter that determines the coupling of
the velocity and scalar field. The conservative quantities are
the total entropy and energy. We shall refer to this as model
2 hereafter.
Before discretizing the equations, we introduce an artifi-
cial damping of the forms—v'u,/k, and —«’6,/k, at
small wave numbers since there is occasionally an inverse
), energy cascade in the modé,16]. A second-order slave-
frog Adams-Bashforth methdd 7] is employed. We choose
ko=1, v=10"-108 At=10"% »'=«k'=10"6, f;=(1
+i)x1073, f,=(1+i/2)x10° 3, f,=0 (n#3,4), and the
shell numbemMN=22. All statistical quantities are calculated
by averaging the ensemble Q(° times after transient pro-
cesses.

t
E=> ( |un|2/2+’&J Re(u? 9,)dt
n=0 0

v==3N_0]6,2/2, andH=3)_, Re@,6), respectively. The
coupling modes of the first equation guarantee Eha con-
served in the nonviscous limihote thats Im(u,#)=0 un-
der this conditioh We will sets=3, which means that the
coupling of the velocity is based on the usual choice. Such a

configuration implies that the velocity field obeys a nearly lll. STRUCTURE FUNCTIONS

universal Scaling[13] that seems closest to real turbulence. In the present model, the anak)gs of the Ve|0city and tem-

The other coefficientst;,az,81,82,71,7, are to be deter- perature structure functions ar&,=(|u,/P) and T,
mined. To keepV and H conserved, the nonlinear terms =(|6,|P). We find a power dependencsp~k_gp T,
) 3P

ﬁrr:]l:jsihh;ve a fluxiike form. By denoting, as, itis easy to ~k,, °? in the range of 4n=13, which is subject to slight

variations with parameters. These functions have no period-
three oscillation except whern=0.5, in which a triple prod-
yi=—7, ay=—PB1=1-7, y=F=7—3. ()  uct (Jup_a|}{ua){uns1|))*? is used to estimats, for
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25 (P)
c E scaling rule. One can compuig/s; directly by determining
£ 3 {p first. However, by plottingS, versusS;, the power scal-
g 2.0 £ E ing may extend to a wider range. This is a property recently
~ 8 E discovered by Benzet al. [3] and called extended self-
WsE E similarity (ESS, which facilitates the determination of the
c E relative exponents. In addition, such an operation can effec-
E E tively reduce the oscillation of structure functions. ESS has
1o E been supported by many observations and numerical works
: [19]. So all the relative scaling exponents here are computed
05 F ] based on ESS. Under our assumption of constant energy
E e communication, we find similar universality; specifically, not
020 bussititisitii ittt nad ONIY the relative scaling exponents of the velocity structure
2 4 6. 8 10 12 14 function but also those of temperature obey the samg2$L
p scaling and are almost parameter independ€igt 1).

When using model 2; similar universality for the relative
FIG. 1. Relative scaling exponents for various paramet@s: scaling exp_onents of the velocity sFructure fupctions is c_)b—
£,145 and (b) £,/£5. (Circles, v=10"%, 7=0.5, anda=0.1; tri- served, which means that the variation of nonlinear coupling
angles,y=10"7, 7=0.5, anda=0.1; starsy=10"7, 7=0.7, and N the scalar equation does not react to affect the velocity
%=0.1; pluses,y=10"7, 7=0.5, and@=2; crossesy=10"7, scaling behaviors. However, the relative scaling exponents of
7=0.5, anda=10; solid line, SL[2] scaling) the temperature structure functions rely strongly ®iiFig.
2). The universality breaks down. We have tried many other

S _— - coupling modes and all of them give a differegy/£; for
eliminating the oscillationT, can be treated similarly. The different coupling coefficients.

exponents(, and ¢, can be determined accurately by mea- 1o agreement of the present model with [2L suggests
suring the slope of the log-log plot in the inertial range. As, nqsitive-energy cascading. In fact, the energy flux cascad-
mentioned above, we find thgf and ¢, depend on param-  jnq from large scales to small scales is much larger than the
etersa and 7. By computing these indices at seven differentexchanging energy between each shell. This indicates that
a within the interval(0.001,10, we obtain the average of nonlinear terms dominate in the energy balance and conse-
sz and &5 as 1.0880.045 and 1.1630.049, respectively. quently the buoyancy does not change the cascading of ki-
The system seems to be more stable to the variations of netic energy much. From a dimensional viewF})

The average of the exponents &t m/10 (m=1,2,...,9)  ~k,(u3)~k,S;, so that a constant cascading flux of kinetic
gives {3=1.115-0.025 and§;=1.163-0.015. In a shell energy implies/3=1. However, a constant flow of total en-
model with hyperviscosity, Leveque and SHE8| found a  ergy toward the high-wave-number end is necessary to sus-
similar dependence. Nevertheless, the relative scaling expeain a positive cascading. Since the exchanging energy de-
nents{,/s; are parameter independent and obey thBL creases with the scales, the kinetic-energy flux cascading to
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FIG. 4. Normalized exchanging energy
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model 1 (circles, «=0.1; triangles,a=1; stars,a=10) and (b)

aﬂwodel 2(circles,«=0.1; triangles@=0.2; stars,a=0.3).

FIG. 3. (a) Velocity spectra andb) temperature spectréThe
symbols are the same as in Fig) 1.

high wave numbers should also decrease slightly. This sm
correction due to weak buoyancy accounts for the fact that
the third-order scaling indices are slightly larger than 1 and
they may be sensitive to the changesaof but not to the This section discusses the behaviors of normalized spectra
changes of-. and the energy transferring scenario in the model. The en-
However, the above scaling consistency of model 1 doe§'9Yy spectra can be normalized with Kolmogorov scaling.
not indicate a full universality by noticing a slight divergence Figure 3a) shows the velocity spectrurtju,|?)/(F )"
of high-order exponents in Fig. 1. In fact, the probability versus the normalized wave numberky, whereF, is the
density functions diversify also in the tails relating to high- ensemble average of the kinetic-energy flex within the
flux events. Moreover, the Lyapunov spectra vary with theinertial range andy= (v%/F )Y This normalized spectrum
parameters. Several reasons may account for this. First, bbas a slope of in the inertial region. Similar universality for
cause of the strong intermittence of the system, the numbdhe temperature spectra has also been f¢&igl 3b), where
of statistical samples may not be large enough to approachfy is the ensemble average Bf]. Again, while the velocity
convergent limit. Second, the inertial range may not be widespectra of model 2 can be normalized by Kolmogorov scal-
enough, so that an error always exists when making a leasing, the normalized temperature spectra depend strongly on
squares fit. Another important factor is that a systematic errothe buoyancy parameter.
may exist in the model because the EE is conserved only In Fig. 3 it is remarkable that the normalized spectra are
whena=0. almost the same forms even in the dissipation range where

IV. ENERGY SPECTRA
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the power dependence of structure functions does not holghoint, a conservation quantity reduces the motion freedom of
This implies that under our assumption, some kind of generahe system so that it may behave more consistently and in-
scaling may be well beyond the range predicted by ESStermittently. In fact, we can design the model based on an
Yamada and OhkitariR0] observed a clear universal scaling artificial conservative quantit =3S)_ k"Re@*9) (m is a
of Lyapunov exponentg .| (largen) againstvk2 in a shell  positive integer aside from the total energy and entropy.
model simulating 2D turbulence. Those exponents of modeHowever, whenm+#0, the model depends strongly on the
1 show similar scaling behaviors. Since the Lyapunov expoparameters. Therefore, we believe that our EE conservation
nent at largen is a large negative number due to the strongmodel may give clues to the universality of a shell model
dissipation, their consistent scaling is indicative of a univer-mimicking the thermal convective turbulence.
sal spectral form in the dissipation range. Our results also suggest a possible EE cascading scenario.
It is interesting to show the exchanging enelfyg. 4). While the velocity-velocity coupling provides a chain rule of
When using model 1, the averaged exchanging energy ithe kinetic energy of eddies, the velocity-temperature cou-
negative at any wave number in the inertial range and theipling enables the constraint of the heat cascading behaviors.
absolute values obey Kolmogorov scaling also, that is, th&he EE conservation implies that for exchanging energy
conversion of heat into kinetic energy occurs at each shethere is also the same inertial region where the total energy
[Fig. 4@]. To maintain this unidirectional communication, and entropy are cascading without damping. In reality, ther-
the EE should cascade also accompanying the kinetic energgal plumes are randomly released from the boundary layer
and entropy cascading. As a matter of fact, we can envisageto the central region, which constantly supplies the neces-
that in real turbulence the heat is attached to every eddy arshry heat to drive the motions of large scalé8]. Then,

transferred to eddies of smaller scales. intuitively, the heat may be attached to each eddy and trans-
However, when applying model 2 the exchanging energyerred to small eddies when the larger ones break.
changes signs at different shellEig. 4(b)]. This means that It is worth noting that the scaling exponents of the tem-

under such a coupling mode, the transferring energy betweguerature structure functions measured here are obviously dif-
velocity and temperature is not unidirectional shell by shellferent from the experimental resu[t], which seems closer
even in the sense of statistics. Moreover, the absolute valuds the prediction of Bolgiano-Obukho{BO) scaling. Bran-

of the exchanging energy show strong oscillatory behaviorslenburg[8] derived the Bolgiano-Obukhov spectrum for
when scaled by Kolmogorov scaling. Recalling the scalingseveral parameters in his model and found that the result is
laws of structure functions, it seems that the character of thparameter dependent. Being contrary to the present model, a
velocity may depend on the nonlinear coupling between veBO scaling is closely related to the inverse cascading of ki-
locity components, whereas that of the temperature may deretic energy[8,9]. Procaccia and Zeitak21] argued that
pend on both the velocity-velocity and the velocity-scalarwhen the Rayleigh number is large enough, a scale range
coupling. Although the exchanging energy is small com-meeting the Bolgiano-Obukhov scaling will be wide enough
pared to the kinetic-energy flux cascaded to small scales, the be measurable. In contrast, there are some other works
nonuniformity of it at each shell makes the behavior of tem-22] in favor of a Kolmogorov spectrum. It is still an unre-
perature totally different. Since the system shows a differensolved problem in what conditions the model including pas-
energy transfer scenario when changingmodel 2 may not  sive scalars will show BO scaling and behave nearly univer-
be structurally stable. sally.

V. DISCUSSION

. ACKNOWLEDGMENTS
From the above results, we see that the conservation laws

are crucial for the scaling behaviors of the shell model, per- The authors appreciate support from the National Foun-
haps because a conservation quantity may provide a dynanttation of Post Doctoral Research and the National Natural
cal rule on the energy cascade. From a topological viewScience Foundation of China.

[1] F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antoma, J. (1962], and the p model by C. Meneveau and K. R.

Fluid Mech. 140, 63 (1984; A. Vincent and M. Meneguzzi, Sreenivasali Phys. Rev. Lett59, 1424(1987).]
ibid. 225 1 (199)); C. Meneveau and K. R. Sreenivasiid. [6] R. A. Antonia, E. J. Hopfinger, Y. Gagne, and F. Anselmet,
224, 429(199)). Phys. Rev. A30, 2704(1984.

[2] Z.-S. She and E. Leveque, Phys. Rev. L&, 336 (1994). [7] M. H. Jensen, G. Paladin, and A. Vulpiani, Phys. Rev43\

[3] R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, and S. Succi, 7214 (1992; A. Crisanti, M. H. Jensen, G. Paladin, and A.
Phys. Rev. E48, R29(1993. Vulpiani, Physica D76, 239 (1994).

[4] H. Politano and A. Pouquet, Phys. Rev5E 636 (1995. [8] A. Brandenburg, Phys. Rev. Le&9, 605 (1992.

[5] There are many models, e.g., the Obukhov-Corrsin scaling pre-[9] E. Suzuki and S. Toh, Phys. Rev.54, 5628(1995.
sented by A. M. Obukhofizv. Akad. Nauk SSSR. Ser. Geogr. [10] P. Frick, B. Dubrulle, and A. Babiano, Phys. Rev5E 5582
Geofiz.13, 58 (1949] and S. Corrsif J. Appl. Phys22, 469 (1995.
(1951, the log-normal model by A. N. KolmogordJ. Fluid [11] L. Kandanoff, D. Lohse, J. Wang, and R. Benzi, Phys. Fluids
Mech. 13, 82 (1962] and A. M. Obukhov(ibid. 13, 77 7, 617(1995.



446 JIANG MINGSHUN AND LIU SHIDA 56

[12] O. Gat, I. Procaccia, and R. Zeitak, Phys. RevbE 1148 [18] E. Leveque and Z.-S. She, Phys. Rev. L&, 2690(1995.

(1995. [19] See, e.g., G. Stolovitzky and K. R. Sreenivasan, Phys. Rev. E
[13] D. Siggia, Annu. Rev. Fluid Mect26, 137 (1994). 48, R33(1993; M. Briscolini, P. Santangelo, S. Succi, and R.
[14] A. S. Monin and A. M. Yaglom Statistical Fluid Mechanics Benzi, ibid. 50, R1745(1994; V. Carbone, P. Veltri, and R.
(MIT Press, Cambridge, MA, 1971Vol. 1. Bruno, Phys. Rev. Letf75, 3110(1995.
[15] V. S. L'vov, Phys. Rev. Lett67, 687 (1991); see also S. Toh  [20] M. Yamada and K. Ohkitani, Phys. Rev. Le80, 983 (1988.
and E. Suzukijbid. 73, 1501(1994. [21] I. Procaccia and R. Zeitak, Phys. Rev. L@&®2, 2128(1989;
[16] C. Basdevant, B. Legras, and R. Sadourny, J. Atmos.38ci. Phys. Rev. Ad2, 821 (1990.
2305(1981).

[22] B. Castaing, Phys. Rev. Let5, 3209 (1990; S. Grossman

[17] U. Frisch, Z.-S. She, and O. Thual, J. Fluid Medi68 221 and D. Losheijbid. 67, 445 (1991.

(1986.



