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Scaling behavior of velocity and temperature in a shell model for thermal convective turbulence

Jiang Mingshun* and Liu Shida
Geophysics Department, Peking University, 100 871, Beijing, People’s Republic of China

~Received 24 June 1996; revised 21 March 1997!

Based on the conservation of total energy and entropy under conditions of nonviscosity and forcing-free, a
shell model is developed to simulate the thermal convective turbulence. A fluxlike coupling mode is supposed
to ensure that the total exchanging energy~EE! between the velocity and temperature is conserved when
omitting the buoyancy, external forcing, and viscous effects. We call this EE conservation. Under such as-
sumptions, the relative scaling exponents of structure functions with orderp are almost parameter independent
and consistent with a multiplicative cascade model presented by She and Leveque@Phys. Rev. Lett.72, 336
~1994!#. Moreover, the energy spectra with different controlling parameters can be collapsed into a single curve
by Kolmogorov scaling. Otherwise, the model behaviors may be parameter dependent.
@S1063-651X~97!00707-1#
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I. INTRODUCTION

It is generally believed that fully developed turbulen
has an inertial range in which the fluid motions show univ
sal behaviors. In particular, the structure functions may
pend on the eddy scale by a power law, i.e.,^dn l

p&; l zp

~wheredn l is longitual velocity difference at distancel , p is
an arbitrary real number, and̂& is statistical average! and
zp is a scaling exponent. In recent years, much numerical
experimental evidence@1# show thatzp is a nonlinear func-
tion of p. This is supposed to be induced by turbulent int
mittence. A variety of phenomenological models have be
proposed by various authors to explain the intermitte
mechanism. Among them the most recent and more plaus
one is that of She and Leveque@2# ~denoted as SL@2# here-
after!. The model predicts thatzp5p/912@12( 23)

p/3],
which is supported by experimental results@3# and observa-
tions of magnetohydrodynamics turbulence@4#. Intuitively, if
a scalar propertyT such as temperature and density is co
vected by the current field, we may expect that a sim
scaling exists for the scalar structure functions, that
^dTl

p&; l jp. However, in the case of thermal convective tu
bulence, the picture is more complicated by the fact that
SL @2# scaling, and other scaling models@5#, seemingly con-
tradict the existing facts@6#.

In the present paper, a shell model~or the Gledzer-
Ohkitani-Yamada model! of thermal convective turbulenc
with neutral stratification is developed to study the scal
behaviors of velocity and passive scalars. Similar mod
have been presented by Jensen and co-workers@7#, in which
the scalar field is purely passively driven by currents, and
Brandenburg@8# and Suzuki and Toh@9# for stable stratifi-
cation. Because the two latter models use real variable
each shell, they may not simulate the phase transfer of
bulence. Generally, a shell model replaces the global co
lation of Navier-Stokes equations by localized nonlinear
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teractions while preserving some basic symmetries
conservation laws. In other words, the differences amo
these models are the choices of local interaction modes
determine the unstable fixed points and accordingly differ
dynamical behaviors may occur@10#. Kadanoff et al. @11#
argued that by conserving kinetic energy and a helicityl
quantity L5((«21)2nuunu2, the system behaves near
universally. By constructing a model with only one conse
vation quantity, Gat, Procaccia, and Zeitak@12# found that
zp5p/3. Therefore, we will restrict ourselves to searchi
for the relationship of conservation laws and dynamical
haviors and the conditions under which a shell model
thermal convective turbulence may seemingly have univ
sality.

For thermal convective turbulence, the heat transp
plays a key role in the motions. In some specific cases s
as Rayleigh-Be´nard convection, the total exchanging ener
~EE!, heat flux converted from external heating into the flu
motions, can be regarded as constant under certain co
tions. Therefore, in our model the nonlinear coupling mod
between shells are designed to conserve the EE in the
of zero viscosity, forcing, and buoyancy. We shall call th
EE conservation.

The paper will be organized as follows. Section II pr
sents the construction of the model. Section III gives
scaling behavior of the structure functions. It is found th
the relative scaling exponents, which are the powers of st
ture functions related to the third-order structure functi
within the inertial range, are almost parameter independ
For the sake of comparison, we apply the coupling mo
suggested by Jensen and co-workers@7# to this problem and
find that the scaling laws strongly depend on the controll
parameters. The normalized spectra and the correspon
energy communication scenario are discussed in Sec.
When EE is conserved, the spectra can be collapsed in
single curve by Kolmogorov scaling even in the dissipati
region. The dynamical implication of the model and conclu
ing remarks are presented in Sec. V.

II. MODEL

For thermal convective turbulence, in addition to som
general symmetries, there are two important conserva
o-
441 © 1997 The American Physical Society
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442 56JIANG MINGSHUN AND LIU SHIDA
quantities, i.e., the total energyE and the total entropyV in
the limit of zero viscosity and forcing. In the context o
theoretical and experimental studies, a horizontally perio
or homogeneous geometry is usually supposed, so that
vertical heat flux is independent of the height of the flu
layer @13#. In a steady state, a constant vertical heat flux
the atmospheric boundary layer can also be assumed to
good approximation under the prerequisite of horizontal
mogeneity@14#. Therefore, we hope that EE can be co
served also under certain conditions while keeping the c
servation ofE andV in our model. To describe the phas
transfer, complex variables will be adopted. A Boussine
approximation@15# is always supposed. With these in min
the model can be constructed as

dun
dt

52nkn
2un1 iknS un11* un12* 2

«

2
un11* un21*

2
12«

4
un21* un22* D2ãun ,

dun
dt

52kkn
2un1 ikn~a1un11* un12* 1a2un12* un11*

1b1un21* un11* 2b2un11* un21* 1g1un21* un22*

1g2un22* un21* !1 f n ,

where complex variablesun andun (n50,1, . . . ,N) are ve-
locity and temperature components for wave numberkn , and
n andk are viscous and diffusive coefficients, respective
throughout this study we choosen5k ~Prandtl number Pr
51!; ã denotes the thermal convection of the velocity fie
which is proportional to the Rayleigh number Ra;f n denotes
the external forcing,kn5k02

n, i5A21, and the asterisks
represents a complex conjugate operation. Obviously,
model herein meets the Liouville theorem(n]u̇n /un50.
The total energyE, entropyV, and exchanging energyH,
can be defined as

E5 (
n50

N S uunu2/21ãE
0

t

Re~un*qn!dtD ,
V5(n50

N uunu2/2, andH5(n50
N Re(unun* ), respectively. The

coupling modes of the first equation guarantee thatE is con-
served in the nonviscous limit@note that( Im(unun* )[0 un-
der this condition#. We will set «5 1

2, which means that the
coupling of the velocity is based on the usual choice. Suc
configuration implies that the velocity field obeys a nea
universal scaling@13# that seems closest to real turbulenc
The other coefficientsa1 ,a2 ,b1 ,b2 ,g1 ,g2 are to be deter-
mined. To keepV and H conserved, the nonlinear term
must have a fluxlike form. By denotinga1 ast, it is easy to
find that

g152t, a252b1512t, g25b25t2 1
2 . ~1!
ic
tal

n
e a
-
-
n-

q

,

,

e

a

.

We call this model 1. After some manipulations we deriv

d

dt
uunu2Y 252nkn

2uunu22ã Re~unun* !1Fu
n2Fu

n21,

d

dt
uunu2Y 25 f nun*2kkn

2uunu21Fu
n2Fu

n21,

d

dt
Re~unun* !5Re@ f n* un2~n1k!kn

2unun* #2ãuunu21Fuu
n

2Fuu
n21,

whereFu
n , Fu

n , andFuu
n represent the corresponding fluxe

transferring toward high wave numbers. Then the total
tropy is conserved without forcing and viscosity, and it w
be conserved statistically in the real model after some tr
sient processes, i.e.,^V&5const. However, the conservatio
of total exchanging energy requires no buoyancy. As a m
ter of fact, the exchanging energy at each shell decreases
constant rateã(uunu2. Here we see that the buoyancy pla
an important role in the cascading processes. While pres
ing total entropy cascading, the existence of buoyancy al
the energy transferring scenario of the velocity field. At ea
shell, even in the so-called inertial range, exchanging ene
is supplied from the scalar field so that kinetic energy flux
not shell independent. Similarly, the EE may not obey
cascading scenario strictly. Nevertheless, our numerical
sults show that energy cascading persists and an obv
inertial region exists@see Fig. 3~a! below#. Moreover, the
scaling rules of structure functions are almost independen
ã.

If we apply the coupling modes of Jensen and co-work
@7# to the present problem, the parameters will be

a15a251, b15b25
1
2 , g15g252 1

4 . ~2!

Now ã is a unique parameter that determines the coupling
the velocity and scalar field. The conservative quantities
the total entropy and energy. We shall refer to this as mo
2 hereafter.

Before discretizing the equations, we introduce an art
cial damping of the forms2n8un /kn and 2k8un /kn at
small wave numbers since there is occasionally an inve
energy cascade in the model@9,16#. A second-order slave
frog Adams-Bashforth method@17# is employed. We choose
k051, n51027–1028, Dt51024, n85k851026, f 35(1
1 i )31023, f 45(11 i /2)31023, f n50 (nÞ3,4), and the
shell numberN522. All statistical quantities are calculate
by averaging the ensemble 103106 times after transient pro
cesses.

III. STRUCTURE FUNCTIONS

In the present model, the analogs of the velocity and te
perature structure functions areSp5^uunup& and Tp
5^uunup&. We find a power dependenceSp;kn

2§p, Tp
;kn

2§p in the range of 4<n<13, which is subject to slight
variations with parameters. These functions have no per
three oscillation except whent50.5, in which a triple prod-
uct (^uun21u&^uunu&^uun11u&)1/3 is used to estimateSp for
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56 443SCALING BEHAVIOR OF VELOCITY AND . . .
eliminating the oscillation.Tp can be treated similarly. The
exponentszp and jp can be determined accurately by me
suring the slope of the log-log plot in the inertial range.
mentioned above, we find thatzp andjp depend on param
etersã andt. By computing these indices at seven differe
ã within the interval~0.001,10!, we obtain the average o
§3 and j3 as 1.08860.045 and 1.16360.049, respectively.
The system seems to be more stable to the variations ot.
The average of the exponents att5m/10 (m51,2, . . . ,9)
gives z351.11560.025 andj351.16360.015. In a shell
model with hyperviscosity, Leveque and She@18# found a
similar dependence. Nevertheless, the relative scaling e
nentszp /§3 are parameter independent and obey the SL@2#

FIG. 1. Relative scaling exponents for various parameters:~a!
zp /z3 and ~b! jp /j3 . ~Circles,n51028, t50.5, andã50.1; tri-
angles,n51027, t50.5, andã50.1; stars,n51027, t50.7, and
ã50.1; pluses,n51027, t50.5, and ã52; crosses,n51027,
t50.5, andã510; solid line, SL@2# scaling.!
-

t

o-

scaling rule. One can computezp /§3 directly by determining
zp first. However, by plottingSp versusS3 , the power scal-
ing may extend to a wider range. This is a property recen
discovered by Benziet al. @3# and called extended self-
similarity ~ESS!, which facilitates the determination of the
relative exponents. In addition, such an operation can eff
tively reduce the oscillation of structure functions. ESS h
been supported by many observations and numerical wo
@19#. So all the relative scaling exponents here are compu
based on ESS. Under our assumption of constant ene
communication, we find similar universality; specifically, no
only the relative scaling exponents of the velocity structu
function but also those of temperature obey the same SL@2#
scaling and are almost parameter independent~Fig. 1!.

When using model 2; similar universality for the relativ
scaling exponents of the velocity structure functions is o
served, which means that the variation of nonlinear coupl
in the scalar equation does not react to affect the veloc
scaling behaviors. However, the relative scaling exponents
the temperature structure functions rely strongly onã ~Fig.
2!. The universality breaks down. We have tried many oth
coupling modes and all of them give a differentjp /j3 for
different coupling coefficients.

The agreement of the present model with SL@2# suggests
a positive-energy cascading. In fact, the energy flux casc
ing from large scales to small scales is much larger than
exchanging energy between each shell. This indicates
nonlinear terms dominate in the energy balance and con
quently the buoyancy does not change the cascading of
netic energy much. From a dimensional view,^Fu

n&
;kn^un

3&;knS3 , so that a constant cascading flux of kinet
energy impliesz351. However, a constant flow of total en
ergy toward the high-wave-number end is necessary to s
tain a positive cascading. Since the exchanging energy
creases with the scales, the kinetic-energy flux cascading

FIG. 2. Relative scalingjp /j3 by model 2. Circles,n51028

and ã50.1; triangles,n51028 and ã50.5; stars,n51028 and
ã52.
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444 56JIANG MINGSHUN AND LIU SHIDA
high wave numbers should also decrease slightly. This sm
correction due to weak buoyancy accounts for the fact
the third-order scaling indices are slightly larger than 1 a
they may be sensitive to the changes ofã, but not to the
changes oft.

However, the above scaling consistency of model 1 d
not indicate a full universality by noticing a slight divergen
of high-order exponents in Fig. 1. In fact, the probabil
density functions diversify also in the tails relating to hig
flux events. Moreover, the Lyapunov spectra vary with
parameters. Several reasons may account for this. First
cause of the strong intermittence of the system, the num
of statistical samples may not be large enough to approa
convergent limit. Second, the inertial range may not be w
enough, so that an error always exists when making a le
squares fit. Another important factor is that a systematic e
may exist in the model because the EE is conserved o
when ã50.

FIG. 3. ~a! Velocity spectra and~b! temperature spectra.~The
symbols are the same as in Fig. 1.!
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IV. ENERGY SPECTRA

This section discusses the behaviors of normalized spe
and the energy transferring scenario in the model. The
ergy spectra can be normalized with Kolmogorov scalin
Figure 3~a! shows the velocity spectrum̂uunu2&/(Fun)

1/2

versus the normalized wave numberkn /kd , whereFu is the
ensemble average of the kinetic-energy fluxFu

n within the
inertial range andkd5(n3/Fu)

1/4. This normalized spectrum
has a slope of23 in the inertial region. Similar universality fo
the temperature spectra has also been found@Fig. 3~b!, where
Fu is the ensemble average ofFn

n#. Again, while the velocity
spectra of model 2 can be normalized by Kolmogorov sc
ing, the normalized temperature spectra depend strongly
the buoyancy parameterã.

In Fig. 3 it is remarkable that the normalized spectra
almost the same forms even in the dissipation range wh

FIG. 4. Normalized exchanging energ
@^Re(unun* )&/(Fuk)

1/2#(kn /kd)
2/3 with n51027 and t50.5 for ~a!

model 1 ~circles, ã50.1; triangles,ã51; stars,ã510! and ~b!
model 2~circles,ã50.1; triangles,ã50.2; stars,ã50.3!.
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56 445SCALING BEHAVIOR OF VELOCITY AND . . .
the power dependence of structure functions does not h
This implies that under our assumption, some kind of gen
scaling may be well beyond the range predicted by E
Yamada and Ohkitani@20# observed a clear universal scalin
of Lyapunov exponentsulnu ~largen! againstnkn

2 in a shell
model simulating 2D turbulence. Those exponents of mo
1 show similar scaling behaviors. Since the Lyapunov ex
nent at largen is a large negative number due to the stro
dissipation, their consistent scaling is indicative of a univ
sal spectral form in the dissipation range.

It is interesting to show the exchanging energy~Fig. 4!.
When using model 1, the averaged exchanging energ
negative at any wave number in the inertial range and t
absolute values obey Kolmogorov scaling also, that is,
conversion of heat into kinetic energy occurs at each s
@Fig. 4~a!#. To maintain this unidirectional communicatio
the EE should cascade also accompanying the kinetic en
and entropy cascading. As a matter of fact, we can envis
that in real turbulence the heat is attached to every eddy
transferred to eddies of smaller scales.

However, when applying model 2 the exchanging ene
changes signs at different shells@Fig. 4~b!#. This means that
under such a coupling mode, the transferring energy betw
velocity and temperature is not unidirectional shell by sh
even in the sense of statistics. Moreover, the absolute va
of the exchanging energy show strong oscillatory behav
when scaled by Kolmogorov scaling. Recalling the scal
laws of structure functions, it seems that the character of
velocity may depend on the nonlinear coupling between
locity components, whereas that of the temperature may
pend on both the velocity-velocity and the velocity-sca
coupling. Although the exchanging energy is small co
pared to the kinetic-energy flux cascaded to small scales
nonuniformity of it at each shell makes the behavior of te
perature totally different. Since the system shows a differ
energy transfer scenario when changingã, model 2 may not
be structurally stable.

V. DISCUSSION

From the above results, we see that the conservation
are crucial for the scaling behaviors of the shell model, p
haps because a conservation quantity may provide a dyn
cal rule on the energy cascade. From a topological vie
, J
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point, a conservation quantity reduces the motion freedom
the system so that it may behave more consistently and
termittently. In fact, we can design the model based on
artificial conservative quantityL5(n50

N kn
mRe(un*q) ~m is a

positive integer! aside from the total energy and entrop
However, whenmÞ0, the model depends strongly on th
parameters. Therefore, we believe that our EE conserva
model may give clues to the universality of a shell mod
mimicking the thermal convective turbulence.

Our results also suggest a possible EE cascading scen
While the velocity-velocity coupling provides a chain rule
the kinetic energy of eddies, the velocity-temperature c
pling enables the constraint of the heat cascading behav
The EE conservation implies that for exchanging ene
there is also the same inertial region where the total ene
and entropy are cascading without damping. In reality, th
mal plumes are randomly released from the boundary la
into the central region, which constantly supplies the nec
sary heat to drive the motions of large scales@13#. Then,
intuitively, the heat may be attached to each eddy and tra
ferred to small eddies when the larger ones break.

It is worth noting that the scaling exponents of the te
perature structure functions measured here are obviously
ferent from the experimental results@6#, which seems close
to the prediction of Bolgiano-Obukhov~BO! scaling. Bran-
denburg @8# derived the Bolgiano-Obukhov spectrum fo
several parameters in his model and found that the resu
parameter dependent. Being contrary to the present mod
BO scaling is closely related to the inverse cascading of
netic energy@8,9#. Procaccia and Zeitak@21# argued that
when the Rayleigh number is large enough, a scale ra
meeting the Bolgiano-Obukhov scaling will be wide enou
to be measurable. In contrast, there are some other w
@22# in favor of a Kolmogorov spectrum. It is still an unre
solved problem in what conditions the model including pa
sive scalars will show BO scaling and behave nearly univ
sally.
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